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Basic Approach



Basic approach

1. formulate circuit design problem as geometric program (GP), an
optimization problem with special form

2. solve GP using specialized, tailored method

e this tutorial focuses on step 1 (a.k.a. GP modeling)

e step 2 is technology
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Why?

e we can solve even large GPs very effectively, using recently developed
methods

e so once we have a GP formulation, we can solve circuit design problem
effectively

we will see that

e GP is especially good at handling a large number of concurrent
constraints

e GP formulation is useful even when it is approximate
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Trade-offs in optimization

e general trade-off between generality and effectiveness

e generality

— number of problems that can be handled
— accuracy of formulation
— ease of formulation

e cffectiveness

— speed of solution, scale of problems that can be handled
— global vs. local solutions
— reliability, baby-sitting, starting point
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Example: least-squares vs. simulated annealing

least-squares
e large problems reliably (globally) solved quickly
e no initial point, no algorithm parameter tuning

e solves very restricted problem form

e with tricks and extensions, basis of vast number of methods that work
(control, filtering, regression, . .. )

simulated annealing

e can be applied to any problem (more or less)
e slow, needs tuning, babysitting; not global in practice

e method of choice for some problems you can’t handle any other way
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Where GP fits in

somewhere in between, closer to least-squares . . .

e like least-squares, large problems can be solved reliably (globally), no
starting point, tuning, . ..

e solves a class of problems broader than least-squares, less general than
simulated annealing

e formulation takes effort, but is fun and has high payoff
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Geometric Programming &
Generalized Geometric Programming



Monomial & posynomial functions

r = (x1,...,%y,): vector of positive optimization variables

e function g of form

g(x) = caytwy® - -y,

with ¢ > 0, o; € R, is called monomial

e sum of monomials, i.e., function f of form
t
_ X1k . O2k «
f(x) = E :Ckxl Lo,

k=1

with ¢ > 0, ;1 € R, is called posynomial
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Examples

with x, y, z variables,

e 0.23, 2z+/x/y, 3x*y '?z are monomials (hence also posynomials)
e 0.23+=x/y, 2(1+xy)3, 2x+ 3y + 2z are posynomials

o 2x + 3y — 2z, x°+tanx are neither
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Generalized posynomials

f is a generalized posynomial if it can be formed using addition,
multiplication, positive power, and maximum, starting from posynomials

examples:

e max {1 + x1,2x1 + :1;8'2:133_3'9}
o (01x1x305—|—x17 g7) o

° (max{l+:1:1,2x1+x8‘2x53°9})1' +CIZ11 3.7
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Composition rules

e monomials closed under product, division, positive scaling, power,
inverse

e posynomials closed under sum, product, positive scaling, division by
monomial, positive integer power

e generalized posynomials closed under sum, product, max, positive
scaling, division by monomial, positive power
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Generalized geometric program (GGP)

minimize  fo(z)
subject to  fi(x) <

fi are generalized posynomials, g; are monomials

e called geometric program (GP) when f; are posynomials

e a highly nonlinear constrained optimization problem
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GP example

e maximize volume of box with width w, height h, depth d

e subject to limits on wall and floor areas, aspect ratios h/w, d/w

maximize hwd
subject to  2(hw + hd) < Ayan, wd < Ag,
a<h/w<B, y<d/w<h

in standard GP form:

minimize h lw td~!

subject to (Q/Awan)h’w + (Q/Awan)hd <1, (1/Aﬂr)’wd <1
ah™lw <1, (1/8)hw <1
ywd™t <1, (1/H)w td<1
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GGP example: Floor planning

w
e choose cell widths, heights 1
o fixed cell areas hflwl ho
o (1 left of 2) above (3 left of 4) (1o
e aspect ratio constraints 3
e minimize bounding box area hs hy

| W3 Wy

minimize  hw

SUbjeCt to hzwz — Aia 1/amax < hz/wz < Cmax;
max{hl, hg} + max{hg, h4} S h,
max{wi + we, w3 + wa} < w

...a GGP
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Trade-off analysis

(no equality constraints, for simplicity)

e form perturbed version of original GP, with changed righthand sides:

minimize  fo(x)
subject to  fi(z) <w;, 1=1,...,m

e u; > 1 (u; < 1) means ith constraint is relaxed (tightened)
e let p(u) be optimal value of perturbed problem

e plot of p vs. u is (globally) optimal trade-off surface (of objective
against constraints)
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Trade-off curves for maximum volume box example

10° — T Agan = 10000
45 ]
0 Awan = 1000
=~ 10%
: | Awa = 100
10%¢ .
10 —— —
10 102 103

Aﬂoor
e maximum volume V vs. Ag,, for Ayan = 100, 1000, 10000

e h/w, d/w aspect ratio limits 0.5, 2
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Sensitivity analysis

e optimal sensitivity of ith constraint is

Op/p

- 8uz/uz u—1

Si

e S, predicts fractional change in optimal objective value if ¢th constraint

is (slightly) relaxed or tightened

e very useful in practice; give quantitative measure of how tight a binding

constraint is

e when we solve a GP we get all optimal sensitivities at no extra cost

EPFL 6,/16/06
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Example

e minimize circuit delay, subject to power, area constraints (details later)

minimize  D(x)
subject to P(x) < Pma%,  A(x) < Amax

e both constraints tight at optimal x*: P(z*) = P™**, A(x*) = A™*
e suppose optimal sensitivities are SPV" = —2.1, §2"°* = —0.3

e we predict:

— for 1% increase in allowed power, optimal delay decreases 2.1%
— for 1% increase in allowed area, optimal delay decreases 0.3%

EPFL 6,/16/06

17



GP and GGP attributes

e after log transform of variables/constraints, they become convex
problems

e can convert GGP to GP, e.g., f(x) + max{g(z),h(x)} < 1 becomes

where t is new (dummy) variable

e conversion tricks can be automated

— parser scans problem description, forms GP
— efficient GP solver solves GP
— solution transformed back (dummy variables eliminated)
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How GPs are solved

the practical answer: none of your business

more politely: you don’t need to know

it's technology:

e good algorithms are known

e good software implementations are available

EPFL 6,/16/06
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How GPs are solved

e work with log of variables: y; = logz;
e take log of monomials/posynomials to get
minimize  log fo(eY)

subject to log f;(e¥) <0, i=1,...,m
log gi(e¥) =0, ¢

e log f;(e¥) are (smooth) convex functions
e log g;(e¥) are affine functions, i.e., linear plus a constant

e solve (nonlinear) convex optimization problem above using
interior-point method
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Current state of the art

e basic interior-point method that exploits sparsity, generic GP structure

e approaching efficiency of linear programming solver

— sparse 1000 vbles, 10000 monomial terms: few seconds
— sparse 10000 vbles, 100000 monomial terms: minute
— sparse 109 vbles, 10" monomial terms: hour

(these are order-of-magnitude estimates, on simple PC)

EPFL 6,/16/06
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History

e GP (and term ‘posynomial’) introduced in 1967 by Duffin, Peterson,
Zener

e engineering applications from the very beginning

— early applications in chemical, mechanical, power engineering

— digital circuit transistor and wire sizing with Elmore delay since 1984
(Fishburn & Dunlap's TILOS)

— analog circuit design since 1997 (Hershenson, Boyd, Lee)

— other applications in finance, wireless power control, statistics, . . .

o extremely efficient solution methods since 1994 or so
(Nesterov & Nemirovsky)
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Mixed-integer geometric program

minimize  fo(x)
subject to  f;(x)

1, 2=1,...,m
gz(x) 1,

<
eD;,, 1=1,...,k
e f; are generalized posynomials, g; are monomials

e D; are discrete sets, e.g., {1,2,3,4,...} or {1,2,4,8...}

e very hard to solve exactly; all methods make some compromise
(compared to methods for GP)

e heuristic methods attempt to find good approximate solutions quickly,
but cannot guarantee optimality

e global methods always find the global solution, but can be extremely
slow
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Digital Circuit Design Applications



Gate scaling
input flip flops  combinational logic block output flip flops

| I ‘
! > 6 >
in—— d 2 —— out
05 > 7 >
» 3
clock r- ]

e combinational logic; circuit topology & gate types given
e gate sizes (scale factors x; > 1) to be determined

e scale factors affect total circuit area, power and delay
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RC gate delay model

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

L Vaq
=i
— / Rz
B
| — an \ szt CzL

e input & intrinsic capacitances, driving resistance, load capacitance

in ~in int ~int D in
Cz' = Cz Li, Cz = Cz Ly, Rz = RZ/ZIL‘Z, E C
JEFO(7)
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RC gate model

e RC gate delay:

D; = 0.69R;(Ci" + C{™) = 0.69 | R:.C;" +

1

e D, are posynomials (of scale factors)

EPFL 6,16/06
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Path and circuit delay

\ 4

v
i A 4

e delay of a path: sum of delays of gates on path
. . . posynomial

e circuit delay: maximum delay over all paths
. . . generalized posynomial
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Area & power

e total circuit area: A = x1A; + -+ x,A,

e total power is P = Pay, + Patat

— dynamic power Py, = Z fz-(CfL-L + ant)Vde
i=1
fi is gate switching frequency

n

— static power Pyiar = Z xiigeakvdd
i=1

I'°ak is leakage current (average over input states) of unit scaled gate

e A and P are linear functions of x, with positive coefficients, hence
posynomials
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Basic gate scaling problem

minimize D
subject to P < pPm&* A < Amax
1<z, 21=1,...,n

...a GGP

extensions/variations:

® minimize area, power, or some combination
e maximize clock frequency subject to area, power limits
e add other constraints

e optimal trade-off of area, power, delay
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Clock frequency maximization

e f.x Is variable

e timing requirement: D < 0.8/ f.x
(20% margin for flip-flop delay, setup time, clock skew . . . )

e P is posynomial of scalings and f.i, assuming f; scale with f.i

maximize  fck
subject to P < pPmax A <A™ (1/0.8)D fax <1,
1<z, 21=1,...,n

...a GGP
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Example: 32-bit Ladner-Fisher adder

e 451 gates (scale factors), 5 gate types, 64 inputs, 32 outputs

e logical effort gate delay model parameters:

gatetype | C'm Ot R A Jleak
INV 3 3 048 3 0.006
NAND?2 4 §) 048 8 0.007
NOR?2 5) 6 0.48 10 0.009
AOI21 6 7 048 17 0.003
OAI21 6 7 048 16 0.003

e time unit is 7, delay of min-size inverter (0.69 - 0.48 -3 = 1)

e area (total width) unit is width of NMQOS in min-size inverter
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Example: 32-bit Ladner-Fisher adder

e typical optimization time: few seconds on PC

16000

Amax

3000
45 70
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32-bit Ladner-Fisher adder with discrete scale factors

e add constraints x; € {1,2,4,8,16,...}

e simple rounding of optimal continuous scalings

_ 16000
optimal continuous

simple rounding

Amax

3000
45 70
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Statistical parameter variation

e circuit peformance depends on random device and process parameters
e hence, performance measures like P, D are random variables P, D
e delay D is max of many random variables; often skewed to right

e distributions of P, D depend on gate scalings x;

frequency

oLl W Hﬂﬂﬂﬂﬂﬂﬂnﬂﬂﬂmﬂm

45 circuit delay 03

e related to (parametric) yield, DFM, DFY . ..
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Statistical design

e measure random performance measures by 95% quantile (say)

minimize  Q?°(D)
subject to Q%°(P) < Pmax, A < Amax
1<z, 1=1,...,n

e extremely difficult stochastic optimization problem; almost no
analytic/exact results

e but, (GP-compatible) heuristic method works well

EPFL 6,/16/06
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Statistical model

e for simplicity consider V;y, variation only

e Pelgrom’s model: oy, = 5‘/13}1:5_1/2

e alpha-power law model: D o« Vyq/(Vaq — Vin)®, with ao ~ 1.3

e for small variation in Vi,

oD

—1- —0.5
amh O'Vth — Oz(Vdd — V:ch) O'Vthilf D

O'D%|

e op is posynomial

e get similar (posynomial) models for o p with more complex gate delay
statistical models

EPFL 6,/16/06
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Heuristic for statistical design

assume generalized posynomial models for gate delay mean D;(x) and
variance o;(x)*

optimize using surrogate gate delays
k;0i(x) are margins on gate delays (k; is typically 2 or 3)

verify statistical performance via Monte Carlo analysis
(can update k;'s and repeat)
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Heuristic for statistical design

heuristic statistical design
e often far superior to design obtained ignoring statistical variation

e not very sensitive to details of process variation statistics (distribution
shape, correlations, . . .)

e below: 32-bit Ladner-Fisher adder, Pelgrom variance model

statistical design

nominal optimal design

frequency

A1 L] il l HHHHHHHHHHHWHHWW

45 . 53
circuit delay
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Joint size and supply/threshold voltage optimization

e goal: jointly optimize gate size, supply and threshold voltages via GGP

e need to: model delay, power as generalized posynomial functions of
gate size, supply and threshold voltages

EPFL 6,/16/06
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Generalized posynomial delay model

e alpha-power law model predicts variation in gate delay with Vg4, Vin:

Vaa,i ~
: Dz i
(Vaa,i — Vin,i)® ()

D; =

~

D; is generalized posynomial gate delay model, function of scalings x

e generalized posynomial approximation
Di = Vi (L + Vini/Vaai + -+ + (Vini/Vaa,i)?)* Di()

error under 1% for Vg, > 2Vin4, 1.3 < a <2
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Generalized posynomial power model

n
e gate dynamic power: Py, = Z fi(CF + C;nt)Vde’i
i=1
e simple static power model:
mn
Pyot = Z xilgeakvdd,i, ]Zleak x e~ Ven,i=7Vad,i)/ Vo
i=1

v, Vi are (process) constants

e P (by itself) cannot be approximated well by a generalized
posynomial over large range of Vg4, Vin

e but, total power P = P4y, + Pstar €an be approximated well by a
generalized posynomial

EPFL 6,/16/06
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Generalized posynomial power model example

total power P

Vde + 30Vqe (Vin—0.06Vqq)/0.039 (up to scaling)

12

12

V2 +0.06V34(1 + 0.0031V44)°%°(V;4,/0.039) ~6-16

P =

e generalized posynomial approximation

e error under 3% (well under accuracy of model!)

43
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Joint optimization of gate sizes, V4,

basic problem, with variables: x;, Vin i, Vad.

minimize
subject to

(...a GGP)

D

P S Pmax’ A S Amax

Vi < Vi S VRS, =1,
i=1,...

legm < Vdd,i < drgaxj
other constraints . . .

discrete allowed Vg4, Vin values yields MIGP

EPFL 6,/16/06
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Extensions/variations
clustering, with single Viq, Vin per cluster:
Vada,i = Vaa,j,  Vin,i = Vin,; for ¢, 7 in same cluster
.. monomial (equality) constraints
clustered voltage scaling (CVS): low Vyq cells cannot drive high V44 cells
Vaa,; < Vaa,; for j € FO(q)
.. monomial (inequality) constraints

multimode design: choose single set of gate scalings, different Vd(g),

Vtglk) for each scenario k=1,..., K

related to dynamic voltage scaling, adaptive bulk biasing, . . .
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Joint optimization examples

e Ladner-Fisher adder

e variables: gate scalings x;, supply voltages V4q,;, threshold voltages Vi, ;

e four delay-power trade-off curves:

— fixed Vdd,z' = 1.0, fixed V:ch,i = 0.3
— fixed Vg4, = 1.0, variable Vi, ; € {0.2,0.3,0.4}
— CVS with Vyq,; € {0.6,1.0}, Vi, € {0.2,0.3,0.4}

— variable continuous Vyq, Vin, 0.6 < Vgq,; < 1.0, 0.2 < Vi ; <04
(not practical, but serves as lower bound)
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30
CVS

lower bound
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Trade-off curve analysis

fixed Vdd1 ‘/th
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Design with multiple threshold voltages

100%
Vihn = 0.4
0
©
60
ks
X
Vin = 0.3
*Vin = 0.2
70

0%
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Clustered voltage scaling

i}
i}
i}
i}

7 Vaa = 0.6

100% //

0
0
i}

% of gates

0% \ OVdd = 1.0
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Analog Circuit Design Applications



Large signal MOS model

D S
] -
G I G I
AT
S D
NMOS PMOS

e gate overdrive voltage Vyoy = Vs — Viny

e saturation condition: Vg > Visat = Vaov (Vdsat is minimum
drain-source voltage for device to operate in saturation)

e square-law model I = 0.5uCo (W/L)V5,
e GP model variables: I, L, W
o Vioy = (WCox/2) 12TV 2LY2W—1/2 is monomial

o Vo = Viov + Vin is posynomial

EPFL 6,/16/06
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Small signal dynamic MOS model
Cea

G i D
Cgb f— Cgs f— gmvgs GD %90 f— Cdb

B S

e transconductance gy, = (2uCox)/21V/2L=1/2W1/2 is monomial
e output conductance g, = Al is monomial
e all capacitances are (approximately) posynomial in I, L, W

e better (GP-compatible) models can be obtained by fitting data from
accurate models or measurements

EPFL 6,/16/06
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Example: monomial ¢,, model

e monomial model of gy, for /O NMQOS device in a 0.13um technology

e 11000 data points (from BSIM3) over ranges

— 03um < L <3um, 2um < W < 20pum
— 0.7V < Vg < 1.7V, Viggar < Vs < 1.5V

e Vs appears in data set, but not in g,, model
e monomial fit (using simple log-regression, Sl units):

G = 0.027810'4798];_0'511WO'5632
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Example: monomial ¢,, model

e fitting (relative) error cumulative distribution plot:

100%

fraction of data points

5% 10%

fitting error

o
X
X

o for 90% of points, fit is better than 4%

EPFL 6,/16/06
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Single transistor common source amplifier

e variables: I, L, W, R

e saturation: Vit + IR < Vg

e gain G = gm/(l/R‘|‘90)

® power P = Vddf

e (unity gain) bandwidth B = g,,/C"

e design problem:

minimize
subject to

EPFL 6,/16/06
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Common source amplifier design via GP

® rewrite as

minimize P
subject to B! < 1/Bmin, G 1< 1/Gmin
Vasat + IR < Vg

e ...a GP, since P and B are monomials, and
G—l _ 1/R + 9o
9dm

is posynomial

e this is a simple problem; don't need GP sledgehammer . . .

EPFL 6,/16/06
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(3

Current mirror opamp

Vaa

D Iref

H

in— —|[_ M,

M2 ]% |n—|—

W

out

.

o My, My and Ms, M4 matched pairs
e four current mirrors: Mg, Ms; Mg, M7, Mg, Ms; My, Mg

EPFL 6,/16/06
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Design problem

minimize P
subject to B > B™", G > G™",
other constraints . . .

e objective & specifications:
— P is power dissipation
— B is unity gain bandwidth
— G is DC gain
— Ais (active) area
e design variables: Lq,..., Ly, W1,...,Wig

o given: Vyq, C1,, .o, common-mode voltage V.,

e we'll formulate as GP

EPFL 6,/16/06
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Power, bandwidth, gain, & area

o power: P = Vaq(Ig + I5 + I7 + I1p)

e bandwidth: B = gm,29m,6/(gm,4CL)

e area: A = W1L1 + -+ W10L10

e gain: G =

9m,29m,6

gm,4(go,6 + 90,7)

. . . posynomial
. monomial

. . . posynomial

. G~ is posynomial, so G > G™ can be written as G~ < 1/G™®

EPFL 6,/16/06
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Dimension, matching, and current constraints
e limits on device sizes: Lyin < L; < Laxy Whin < W;, e =1,...,10
e differential symmetry constraints (M7, My and M3, My matched):

Wy =W,  Li=Ly L =15
W3 = Wy, L3 = Ly, I3 = 1y,

e length & gate overdrive voltage matched for current mirror pairs:

Ls = Lsg, Lo = L7, L3 = Ly, Ly = Lg
Vgov,5 — Vgov,S: Vgov,lO — VgOV,77 Vgov,S — Vgov,97 Vgov,4 — Vgov,6

e current relations:

I =13=1;/2, Ig = Ief, Ig = Iy, Iy = I
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Saturation constraints

e diode connected devices (M3, My, Mg, M1g) automatically in saturation

e others must have Vs > Vygat:
— M7 Vasat,7 < Vem
— Me¢: Vasat,6 + Vem < Vaa
— Mo: Visat,9 + Veas 10 < Vaa
— Ms: Vass + Ves1 < Vem
— My & Msy: Vo + Vs 3 < Vaa + Vin

e ... all are posynomial inequalities
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Node capacitances and non-dominant poles

e capacitances at nodes are posynomials, e.g.,

C°" = Cya6 + Cab,6 + Cear + Cap.7 + CL

e non-dominant time constants are posynomials:

_ Ca

)
9m,3

Ca2 Cao
p— —7 ’7_9 p—
9m. 4 9m,10

T T2

(Ca1, Cya2, Cqg are node capacitances at drains of My, My, M)

e to limit effect of non-dominant poles, make sum smaller than dominant
time constant:
71 + T2 + T < Tdom = CL/gm
... a posynomial constraint
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Joint electrical /physical design

e cach device has a (physical) cell width w and height h for floor planning
e devices are folded into multiple fingers

e (approximate) posynomial or monomial relations link electrical variables
(I, L, W) and physical variables (w, h), e.g.,

— cell area is at least 4x active area: wh > 4W L
— cell aspect ratio limited to 5:1: 1/5 < w/h <5

< »
< »
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Slicing tree layout scheme

e vertical and horizontal slices fix relative placement of device cells

e |eaves are device cells; root is bounding box

hbbox

- - - - - - e e — - - = =

EPFL 6,/16/06
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Slicing tree constraints
e introduce width, height for each node in slicing tree
e for each vertical slice with parent a and children b, ¢ add constraints

W, = Wy + We, he = max{hy, he}

e for each horizontal slice with parent a and children b, c add constraints

we = max{wp, We}, h, = hy + h.

e shows width and height of bounding box and each node is generalized
posynomial of device cell widths, heights

e resulting GP formulation is very sparse

EPFL 6,/16/06
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Joint electrical /physical design via GP

e form one GP that includes

— electrical variables, constraints (I;, L;, Ws, gm.i - - -)
— physical variables, constraints (w;, h;, wPPox, RPPOx )
— coupling constraints (w;h; > 4W;L;, . . . )

e solve it all together

e extensions: can add

— parasitic estimates
— more accurate expressions for device cell dimensions
— channels for routing

EPFL 6,/16/06
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Optimal filter implementation

simple Gm-C two-pole lowpass filter

- output

input

0
|
i
3
|
§

transfer function is

1
14 t18 + tytes?’

H(s)

t1 =C1/g1, to=Cy/g9

g; is amplifier transconductance

EPFL 6,/16/06

67



Noise analysis

e N, is input referred (white) amplifier input-referred voltage density

e spectral density of output noise is

N? + w? N2
(1 — t1tow?)? + t2w?

N(w)? =

e root-mean-square output noise voltage is

o0 1/2
M = (/ N(w)? dw) = (aN7 + BN3) b2
0
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Amplifier and capacitor implementation models

e cach amplifier has private variables u (e.g., device lengths & widths)
and constraints

e transconductance g is monomial in u; area A*™P, power P,
input-referred noise density /N are posynomial in u

e cach capacitor has private variables v (e.g., physical dimensions) and
constraints

e capacitance C' is monomial in v; area A®®P is posynomial

e design variables are uq, uo, v1, v

EPFL 6/16/06 69



Optimal filter implementation problem

o filter is Butterworth with frequency w.:

t = V2/we, to = (1/v2) /w,

e minimize total power of implementation, subject to area, output noise
limits:

minimize  P(u1) + P(us)

subject to  t; = v/2/w, ty = (1/v/2)/w.
Aamp(ul) _I_Aamp(UQ)_l_Acap(,Ul) _|_Acap(,U2) S Amax
M = (wo/4V2)(N? +2N3)1/% < M

e a GGP in the variables uq, us, vy, vo
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Example

e Butterworth filter with w. = 10%rad/s
e private variables in amplifiers: (equivalent) L, W

e amplifier model:

AP — WL, P =25-10"4W/L,

g=4-10""W/L, N =./7.5-10~16L/W
(based on simple model with Vygq = 2.5, Vo = 0.2)

e private variable in capacitors is area A°P; C' = 10~ % AP

o A& —4.107
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Power versus noise trade-off

10 100
max noise M™?* (uV RMS)
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Monomial and Posynomial Fitting



A basic property of posynomials

e if f is a monomial, then log f(eY) is affine (linear plus constant)
e if f is a posynomial, then log f(e¥) is convex
e roughly speaking, a posynomial is convex when plotted on log-log plot

e midpoint rule for posynomial f:

— let z be elementwise geometric mean of x, vy, i.e., z; = \/2;Y;

— then f(2) < /f(z)f(y)

e a converse: if log ¢(e¥) is convex, then ¢ can be approximated as well
as you like by a posynomial

EPFL 6/16/06 73



Convexity in circuit design context

e consider circuit with design variables W7y, ..., W, (say) & performance
measure ¢p(W1,...,W,) (e.g., power, delay, area)

e two designs: Wi(a) & Wi(b), with performance qb(a) & qb(b)

e form geometric mean compromise design with WZ.(C) = \/Wi(a)Wi(b),
performance ¢(¢)

e if ¢ is generalized posynomial, then we have ¢(¢) < 1/¢(@) ()

e this is not obvious
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Monomial /posynomial approximation: Theory

when can a function f be approximated by a monomial or generalized
posynomial?

e form function F'(y) = log f(eY)

e f can be approximated by a monomial if and only if F' is nearly affine
(linear plus constant)

e f can be approximated by a generalized posynomial if and only if F'is
nearly convex
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Examples

1 ‘ ————————0.5/(1.5 — 2)
: /tanh(w)

0.1

0.1 | !

e tanh(z) can be reasonably well fit by a monomial

e 0.5/(1.5 — x) can be fit by a generalized posynomial

o (2/\/m) fxoo e=t" dt cannot be fit very well by a generalized posynomial
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What problems can be approximated by GGPs?

minimize  fo(x)
subject to  f;(z) <

e transformed objective and inequality constraint functions
F;(y) = log fi(eY) must be nearly convex

e transformed equality constraint functions G;(y) = log G;(e¥) must be
nearly affine
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Monomial fitting via log-regression

find coefficient ¢ > 0 and exponents aq, ..., a, of monomial f so that
f@~f@  i=1,...,N

® rewrite as

log f(zP) = logc+arlogz!” + -+ a,logzl?

~ logf(i), 1=1,...,N

e use least-squares (regression) to find logc, ay, ..., a, that minimize
N . | N2
Z (logc +arlogz!? + -+ a,logz) — log f(”)
i=1

EPFL 6,/16/06



Posynomial fitting via Gauss-Newton

find coefficients and exponents of posynomial f so that
f@N~fD  i=1,...,N

e minimize sum of squared fractional errors

N : N
£ — fat)
> ()

1=1

can be (locally) solved by Gauss-Newton method

e needs starting guess for coefficients, exponents
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Posynomial fitting example

e 1000 data points from f(x) = ellogw)*+(10822) oyer 0.1 < z; < 1

e cumulative error distribution for 3-, 5-, and 7-term posynomial fits

100

fraction of data points in %
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A simple max-monomial fitting method

fit max-monomial

flr) = max fr(x)

k=1,... K
(f1,--., fx monomials) to data a:“),f(i), i=1,....N

simple algorithm:
repeat
fork=1,... . K

1. find all data points /) for which fi(z(9)) = f(21))
(i.e., data points at which fj is the largest of the monomials)

2. update fi by carrying out monomial fit to these data
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Max-monomial fitting example

e same 1000 data points as previous example

e cumulative error distribution for 3-, 5-, and 7-term max-monomial fits
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100

N

0.1

0.2 0.3
relative error in %

0.4

0.5
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Software & Modeling Systems



GP solvers

GP solvers (primal-dual, interior-point, exploit sparsity):

e MOSEK: www.mosek.com
(commercial; C with Matlab interface)

e GPCVX, GPPOSY: www.stanford.edu/ "boyd/ggplab/
(open source; Matlab)

e CVXOPT: www.ee.ucla.edu/"vandenbe/cvxopt/
(open source; Python/C)
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GP/GGP modeling systems

e allow simple specification of GPs and GGPs in natural form

— declare optimization variables
— form monomial, posynomial, generalized posynomial expressions
— specify objective and constraints

e automatically transform to standard GP, call solver, transform back

e built using object-oriented methods and/or compiler-compilers
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Example (ggplab)

gpvar X y z % create three scalar GP variables
ml = 3.4*%xx"-0.33/z %» form a monomial

pl = z*sqrt(m1)+0.1/m1 % form a posynomial

gpl = max(1l,x+y,pl) %» form a generalized posynomial

%» form an array of constraints
constrs = [ mil==x, pl<=ml, 1<=y, gpl+pi<=5/y ]

% solve generalized GP
[obj_value, solution, status] = gpsolve(x+y+z,constrs)
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Current GP/GGP modeling systems

e YALMIP: control.ee.ethz.ch/"joloef/yalmip.msql

— Matlab; supports multiple solvers
— part of much larger optimization modeling system

e GGPLAB: www.stanford.edu/ "boyd/ggplab/

— open source; Matlab
— simple system for GP/GGP only; meant for tutorial purposes

o CVX: www.stanford.edu/ boyd/cvx/

— open source; Matlab/C
— part of larger convex optimization modeling system
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Conclusions



Conclusions

(generalized) geometric programming

e comes up in a variety of circuit sizing contexts

e can be used to formulate a variety of problems

e admits fast, reliable solution of large-scale problems

e is good at concurrently balancing lots of coupled constraints and
objectives

e is useful even when problem has discrete constraints
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Approach

e most problems don't come naturally in GP form; be prepared to
reformulate and/or approximate

e GP modeling is not a “try my software” method; it requires thinking

e our approach:

— start with simple analytical models (RC, square-law, Pelgrom, . .
to verify GP might apply

— then fit GP-compatible models to simulation or measured data

— for highest accuracy, revert to local method for final polishing
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