
Geometric Programming for Circuit Design

Stephen Boyd Seung Jean Kim

EPFL 6/16/06



Outline

• Basic approach

• Geometric programming & generalized geometric programming

• Digital circuit design applications

• Analog and RF circuit design applications

• Monomial and posynomial fitting

• Software and modeling systems

• Conclusions

EPFL 6/16/06 1



Basic Approach



Basic approach

1. formulate circuit design problem as geometric program (GP), an
optimization problem with special form

2. solve GP using specialized, tailored method

• this tutorial focuses on step 1 (a.k.a. GP modeling)

• step 2 is technology

EPFL 6/16/06 2



Why?

• we can solve even large GPs very effectively, using recently developed
methods

• so once we have a GP formulation, we can solve circuit design problem
effectively

we will see that

• GP is especially good at handling a large number of concurrent
constraints

• GP formulation is useful even when it is approximate
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Trade-offs in optimization

• general trade-off between generality and effectiveness

• generality

– number of problems that can be handled
– accuracy of formulation
– ease of formulation

• effectiveness

– speed of solution, scale of problems that can be handled
– global vs. local solutions
– reliability, baby-sitting, starting point
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Example: least-squares vs. simulated annealing

least-squares

• large problems reliably (globally) solved quickly

• no initial point, no algorithm parameter tuning

• solves very restricted problem form

• with tricks and extensions, basis of vast number of methods that work
(control, filtering, regression, . . . )

simulated annealing

• can be applied to any problem (more or less)

• slow, needs tuning, babysitting; not global in practice

• method of choice for some problems you can’t handle any other way
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Where GP fits in

somewhere in between, closer to least-squares . . .

• like least-squares, large problems can be solved reliably (globally), no
starting point, tuning, . . .

• solves a class of problems broader than least-squares, less general than
simulated annealing

• formulation takes effort, but is fun and has high payoff
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Geometric Programming &
Generalized Geometric Programming



Monomial & posynomial functions

x = (x1, . . . , xn): vector of positive optimization variables

• function g of form
g(x) = cxα1

1 xα2
2 · · ·xαn

n ,

with c > 0, αi ∈ R, is called monomial

• sum of monomials, i.e., function f of form

f(x) =

t∑

k=1

ckx
α1k
1 x

α2k
2 · · ·xαnk

n ,

with ck > 0, αik ∈ R, is called posynomial

EPFL 6/16/06 7



Examples

with x, y, z variables,

• 0.23, 2z
√

x/y, 3x2y−.12z are monomials (hence also posynomials)

• 0.23 + x/y, 2(1 + xy)3, 2x + 3y + 2z are posynomials

• 2x + 3y − 2z, x2 + tan x are neither
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Generalized posynomials

f is a generalized posynomial if it can be formed using addition,
multiplication, positive power, and maximum, starting from posynomials

examples:

• max
{
1 + x1, 2x1 + x0.2

2 x−3.9
3

}

•
(
0.1x1x

−0.5
3 + x1.7

2 x0.7
3

)1.5

•
(
max

{
1 + x1, 2x1 + x0.2

2 x−3.9
3

})1.7
+ x1.1

2 x3.7
3
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Composition rules

• monomials closed under product, division, positive scaling, power,
inverse

• posynomials closed under sum, product, positive scaling, division by
monomial, positive integer power

• generalized posynomials closed under sum, product, max, positive
scaling, division by monomial, positive power
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Generalized geometric program (GGP)

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . , m

gi(x) = 1, i = 1, . . . , p

fi are generalized posynomials, gi are monomials

• called geometric program (GP) when fi are posynomials

• a highly nonlinear constrained optimization problem
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GP example

• maximize volume of box with width w, height h, depth d

• subject to limits on wall and floor areas, aspect ratios h/w, d/w

maximize hwd
subject to 2(hw + hd) ≤ Awall, wd ≤ Aflr

α ≤ h/w ≤ β, γ ≤ d/w ≤ δ

in standard GP form:

minimize h−1w−1d−1

subject to (2/Awall)hw + (2/Awall)hd ≤ 1, (1/Aflr)wd ≤ 1
αh−1w ≤ 1, (1/β)hw−1 ≤ 1
γwd−1 ≤ 1, (1/δ)w−1d ≤ 1
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GGP example: Floor planning

• choose cell widths, heights

• fixed cell areas

• (1 left of 2) above (3 left of 4)

• aspect ratio constraints

• minimize bounding box area

PSfrag replacements

w1 w2

w3
w4

w

h1 h2

h3 h4

h

minimize hw
subject to hiwi = Ai, 1/αmax ≤ hi/wi ≤ αmax,

max{h1, h2} + max{h3, h4} ≤ h,
max{w1 + w2, w3 + w4} ≤ w

. . . a GGP

EPFL 6/16/06 13



Trade-off analysis

(no equality constraints, for simplicity)

• form perturbed version of original GP, with changed righthand sides:

minimize f0(x)
subject to fi(x) ≤ ui, i = 1, . . . , m

• ui > 1 (ui < 1) means ith constraint is relaxed (tightened)

• let p(u) be optimal value of perturbed problem

• plot of p vs. u is (globally) optimal trade-off surface (of objective
against constraints)
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Trade-off curves for maximum volume box example
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• maximum volume V vs. Aflr, for Awall = 100, 1000, 10000

• h/w, d/w aspect ratio limits 0.5, 2
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Sensitivity analysis

• optimal sensitivity of ith constraint is

Si =
∂p/p

∂ui/ui

∣∣∣∣
u=1

• Si predicts fractional change in optimal objective value if ith constraint
is (slightly) relaxed or tightened

• very useful in practice; give quantitative measure of how tight a binding
constraint is

• when we solve a GP we get all optimal sensitivities at no extra cost
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Example

• minimize circuit delay, subject to power, area constraints (details later)

minimize D(x)
subject to P (x) ≤ Pmax, A(x) ≤ Amax

• both constraints tight at optimal x?: P (x?) = Pmax, A(x?) = Amax

• suppose optimal sensitivities are Spwr = −2.1, Sarea = −0.3

• we predict:

– for 1% increase in allowed power, optimal delay decreases 2.1%
– for 1% increase in allowed area, optimal delay decreases 0.3%
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GP and GGP attributes

• after log transform of variables/constraints, they become convex
problems

• can convert GGP to GP, e.g., f(x) + max{g(x), h(x)} ≤ 1 becomes

f(x) + t ≤ 1, g(x)/t ≤ 1, h(x)/t ≤ 1

where t is new (dummy) variable

• conversion tricks can be automated

– parser scans problem description, forms GP
– efficient GP solver solves GP
– solution transformed back (dummy variables eliminated)

EPFL 6/16/06 18



How GPs are solved

the practical answer: none of your business

more politely: you don’t need to know

it’s technology:

• good algorithms are known

• good software implementations are available
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How GPs are solved

• work with log of variables: yi = log xi

• take log of monomials/posynomials to get

minimize log f0(e
y)

subject to log fi(e
y) ≤ 0, i = 1, . . . , m

log gi(e
y) = 0, i = 1, . . . , p

• log fi(e
y) are (smooth) convex functions

• log gi(e
y) are affine functions, i.e., linear plus a constant

• solve (nonlinear) convex optimization problem above using
interior-point method
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Current state of the art

• basic interior-point method that exploits sparsity, generic GP structure

• approaching efficiency of linear programming solver

– sparse 1000 vbles, 10000 monomial terms: few seconds
– sparse 10000 vbles, 100000 monomial terms: minute
– sparse 106 vbles, 107 monomial terms: hour

(these are order-of-magnitude estimates, on simple PC)
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History

• GP (and term ‘posynomial’) introduced in 1967 by Duffin, Peterson,
Zener

• engineering applications from the very beginning

– early applications in chemical, mechanical, power engineering
– digital circuit transistor and wire sizing with Elmore delay since 1984

(Fishburn & Dunlap’s TILOS)
– analog circuit design since 1997 (Hershenson, Boyd, Lee)
– other applications in finance, wireless power control, statistics, . . .

• extremely efficient solution methods since 1994 or so
(Nesterov & Nemirovsky)
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Mixed-integer geometric program

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m

gi(x) = 1, i = 1, . . . , p
xi ∈ Di, i = 1, . . . , k

• fi are generalized posynomials, gi are monomials

• Di are discrete sets, e.g., {1, 2, 3, 4, . . .} or {1, 2, 4, 8 . . .}
• very hard to solve exactly; all methods make some compromise

(compared to methods for GP)

• heuristic methods attempt to find good approximate solutions quickly,
but cannot guarantee optimality

• global methods always find the global solution, but can be extremely
slow
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Digital Circuit Design Applications



Gate scaling

PSfrag replacements

1

2

3

4

5

6

7

input flip flops output flip flops

in out

clock

combinational logic block

RA

RB

RC

CX

CY

• combinational logic; circuit topology & gate types given

• gate sizes (scale factors xi ≥ 1) to be determined

• scale factors affect total circuit area, power and delay
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RC gate delay model

PSfrag replacements

Ri

Ri

Vdd

C in
i

C in
i

C int
i CL

i

• input & intrinsic capacitances, driving resistance, load capacitance

C in
i = C̄ in

i xi, C int
i = C̄ int

i xi, Ri = R̄i/xi, CL
i =

∑

j∈FO(i)

C in
j
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RC gate model

• RC gate delay:

Di = 0.69Ri(C
L
i + C int

i ) = 0.69


R̄iC̄

in
i + (R̄i/xi)

∑

j∈FO(i)

C̄ in
j xj




• Di are posynomials (of scale factors)
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Path and circuit delay

PSfrag replacements

1

2

3

4
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• delay of a path: sum of delays of gates on path
. . . posynomial

• circuit delay: maximum delay over all paths
. . . generalized posynomial
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Area & power

• total circuit area: A = x1Ā1 + · · · + xnĀn

• total power is P = Pdyn + Pstat

– dynamic power Pdyn =

n∑

i=1

fi(C
L
i + C int

i )V 2
dd

fi is gate switching frequency

– static power Pstat =

n∑

i=1

xiĪ
leak
i Vdd

Ī leak
i is leakage current (average over input states) of unit scaled gate

• A and P are linear functions of x, with positive coefficients, hence
posynomials
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Basic gate scaling problem

minimize D
subject to P ≤ Pmax, A ≤ Amax

1 ≤ xi, i = 1, . . . , n

. . . a GGP

extensions/variations:

• minimize area, power, or some combination

• maximize clock frequency subject to area, power limits

• add other constraints

• optimal trade-off of area, power, delay
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Clock frequency maximization

• fclk is variable

• timing requirement: D ≤ 0.8/fclk

(20% margin for flip-flop delay, setup time, clock skew . . . )

• P is posynomial of scalings and fclk, assuming fi scale with fclk

maximize fclk

subject to P ≤ Pmax, A ≤ Amax, (1/0.8)Dfclk ≤ 1,
1 ≤ xi, i = 1, . . . , n

. . . a GGP
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Example: 32-bit Ladner-Fisher adder

• 451 gates (scale factors), 5 gate types, 64 inputs, 32 outputs

• logical effort gate delay model parameters:

gate type C̄ in C̄ int R̄ Ā Ī leak

INV 3 3 0.48 3 0.006
NAND2 4 6 0.48 8 0.007
NOR2 5 6 0.48 10 0.009
AOI21 6 7 0.48 17 0.003
OAI21 6 7 0.48 16 0.003

• time unit is τ , delay of min-size inverter (0.69 · 0.48 · 3 = 1)

• area (total width) unit is width of NMOS in min-size inverter
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Example: 32-bit Ladner-Fisher adder

• typical optimization time: few seconds on PC
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32-bit Ladner-Fisher adder with discrete scale factors

• add constraints xi ∈ {1, 2, 4, 8, 16, . . .}
• simple rounding of optimal continuous scalings
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Statistical parameter variation

• circuit peformance depends on random device and process parameters

• hence, performance measures like P , D are random variables P, D

• delay D is max of many random variables; often skewed to right

• distributions of P, D depend on gate scalings xi
PSfrag replacements
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• related to (parametric) yield, DFM, DFY . . .
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Statistical design

• measure random performance measures by 95% quantile (say)

minimize Q.95(D)
subject to Q.95(P) ≤ Pmax, A ≤ Amax

1 ≤ xi, i = 1, . . . , n

• extremely difficult stochastic optimization problem; almost no
analytic/exact results

• but, (GP-compatible) heuristic method works well
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Statistical model

• for simplicity consider Vth variation only

• Pelgrom’s model: σVth
= σ̄Vth

x−1/2

• alpha-power law model: D ∝ Vdd/(Vdd − Vth)
α, with α ≈ 1.3

• for small variation in Vth,

σD ≈
∣∣∣∣
∂D

∂Vth

∣∣∣∣σVth
= α(Vdd − Vth)

−1σ̄Vth
x−0.5D

• σD is posynomial

• get similar (posynomial) models for σD with more complex gate delay
statistical models
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Heuristic for statistical design

• assume generalized posynomial models for gate delay mean Di(x) and
variance σi(x)2

• optimize using surrogate gate delays

D̃i(x) = Di(x) + κiσi(x)

κiσi(x) are margins on gate delays (κi is typically 2 or 3)

• verify statistical performance via Monte Carlo analysis
(can update κi’s and repeat)
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Heuristic for statistical design

heuristic statistical design

• often far superior to design obtained ignoring statistical variation

• not very sensitive to details of process variation statistics (distribution
shape, correlations, . . . )

• below: 32-bit Ladner-Fisher adder, Pelgrom variance model
PSfrag replacements
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Path delay mean/std. dev. scatter plots
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Joint size and supply/threshold voltage optimization

• goal: jointly optimize gate size, supply and threshold voltages via GGP

• need to: model delay, power as generalized posynomial functions of
gate size, supply and threshold voltages
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Generalized posynomial delay model

• alpha-power law model predicts variation in gate delay with Vdd, Vth:

Di =
Vdd,i

(Vdd,i − Vth,i)α
D̃i(x)

D̃i is generalized posynomial gate delay model, function of scalings x

• generalized posynomial approximation

D̂i = V 1−α
dd,i (1 + Vth,i/Vdd,i + · · · + (Vth,i/Vdd,i)

5)αD̃i(x)

error under 1% for Vdd,i ≥ 2Vth,i, 1.3 ≤ α ≤ 2
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Generalized posynomial power model

• gate dynamic power: Pdyn =
n∑

i=1

fi(C
L
i + C int

i )V 2
dd,i

• simple static power model:

Pstat =

n∑

i=1

xiĪ
leak
i Vdd,i, Ī leak

i ∝ e−(Vth,i−γVdd,i)/V0

γ, V0 are (process) constants

• Pstat (by itself) cannot be approximated well by a generalized
posynomial over large range of Vdd, Vth

• but, total power P = Pdyn + Pstat can be approximated well by a
generalized posynomial
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Generalized posynomial power model example

total power P = V 2
dd + 30Vdde

−(Vth−0.06Vdd)/0.039 (up to scaling)PSfrag replacements
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• generalized posynomial approximation
P̂ = V 2

dd + 0.06Vdd(1 + 0.0031Vdd)
500(Vth/0.039)−6.16

• error under 3% (well under accuracy of model!)
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Joint optimization of gate sizes, Vdd, & Vth

basic problem, with variables: xi, Vth,i, Vdd,i

minimize D
subject to P ≤ Pmax, A ≤ Amax

V min
th ≤ Vth,i ≤ V max

th , i = 1, . . . , n
V min

dd ≤ Vdd,i ≤ V max
dd , i = 1, . . . , n

other constraints . . .

(. . . a GGP)

discrete allowed Vdd, Vth values yields MIGP
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Extensions/variations

• clustering, with single Vdd, Vth per cluster:

Vdd,i = Vdd,j, Vth,i = Vth,j for i, j in same cluster

. . . monomial (equality) constraints

• clustered voltage scaling (CVS): low Vdd cells cannot drive high Vdd cells

Vdd,j ≤ Vdd,i for j ∈ FO(i)

. . . monomial (inequality) constraints

• multimode design: choose single set of gate scalings, different V
(k)
dd ,

V
(k)
th for each scenario k = 1, . . . ,K

related to dynamic voltage scaling, adaptive bulk biasing, . . .
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Joint optimization examples

• Ladner-Fisher adder

• variables: gate scalings xi, supply voltages Vdd,i, threshold voltages Vth,i

• four delay-power trade-off curves:

– fixed Vdd,i = 1.0, fixed Vth,i = 0.3

– fixed Vdd,i = 1.0, variable Vth,i ∈ {0.2, 0.3, 0.4}
– CVS with Vdd,i ∈ {0.6, 1.0}, Vth,i ∈ {0.2, 0.3, 0.4}
– variable continuous Vdd, Vth, 0.6 ≤ Vdd,i ≤ 1.0, 0.2 ≤ Vth,i ≤ 0.4

(not practical, but serves as lower bound)
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Trade-off curve analysis
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Design with multiple threshold voltages
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Clustered voltage scaling
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Analog Circuit Design Applications



Large signal MOS model
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• gate overdrive voltage Vgov = Vgs − Vth

• saturation condition: Vds ≥ Vdsat = Vgov (Vdsat is minimum
drain-source voltage for device to operate in saturation)

• square-law model I = 0.5µCox(W/L)V 2
gov

• GP model variables: I, L, W

• Vgov = (µCox/2)−1/2I1/2L1/2W−1/2 is monomial

• Vgs = Vgov + Vth is posynomial

EPFL 6/16/06 50



Small signal dynamic MOS model
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Cgb Cgs gmvgs go Cdb

Cgd
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• transconductance gm = (2µCox)
1/2I1/2L−1/2W 1/2 is monomial

• output conductance go = λI is monomial

• all capacitances are (approximately) posynomial in I, L, W

• better (GP-compatible) models can be obtained by fitting data from
accurate models or measurements
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Example: monomial gm model

• monomial model of gm for I/O NMOS device in a 0.13µm technology

• 11000 data points (from BSIM3) over ranges

– 0.3µm ≤ L ≤ 3µm, 2µm ≤ W ≤ 20µm
– 0.7V ≤ Vgs ≤ 1.7V, Vdsat ≤ Vds ≤ 1.5Vgs

• Vds appears in data set, but not in gm model

• monomial fit (using simple log-regression, SI units):

gm = 0.0278I0.4798L−0.511W 0.5632
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Example: monomial gm model

• fitting (relative) error cumulative distribution plot:
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• for 90% of points, fit is better than 4%
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Single transistor common source amplifier

• variables: I, L, W , R

• saturation: Vdsat + IR ≤ Vdd

• gain G = gm/(1/R + go)

• power P = VddI

• (unity gain) bandwidth B = gm/CL

• design problem:

minimize P
subject to B ≥ Bmin, G ≥ Gmin

saturation
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Common source amplifier design via GP

• rewrite as

minimize P
subject to B−1 ≤ 1/Bmin, G−1 ≤ 1/Gmin

Vdsat + IR ≤ Vdd

• . . . a GP, since P and B are monomials, and

G−1 =
1/R + go

gm

is posynomial

• this is a simple problem; don’t need GP sledgehammer . . .
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Current mirror opamp
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• M1,M2 and M3,M4 matched pairs

• four current mirrors: M8,M5; M10,M7; M9,M3; M4, M6
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Design problem

minimize P
subject to B ≥ Bmin, G ≥ Gmin, A ≤ Amax

other constraints . . .

• objective & specifications:

– P is power dissipation
– B is unity gain bandwidth
– G is DC gain
– A is (active) area

• design variables: L1, . . . , L10, W1, . . . ,W10

• given: Vdd, CL, Iref, common-mode voltage Vcm

• we’ll formulate as GP
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Power, bandwidth, gain, & area

• power: P = Vdd(I8 + I5 + I7 + I10) . . . posynomial

• bandwidth: B = gm,2gm,6/(gm,4CL) . . . monomial

• area: A = W1L1 + · · · + W10L10 . . . posynomial

• gain: G =
gm,2gm,6

gm,4(go,6 + go,7)

. . . G−1 is posynomial, so G ≥ Gmin can be written as G−1 ≤ 1/Gmin
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Dimension, matching, and current constraints

• limits on device sizes: Lmin ≤ Li ≤ Lmax, Wmin ≤ Wi, i = 1, . . . , 10

• differential symmetry constraints (M1, M2 and M3, M4 matched):

W1 = W2, L1 = L2, I1 = I2,
W3 = W4, L3 = L4, I3 = I4,

• length & gate overdrive voltage matched for current mirror pairs:

L5 = L8, L10 = L7, L3 = L9, L4 = L6

Vgov,5 = Vgov,8, Vgov,10 = Vgov,7, Vgov,3 = Vgov,9, Vgov,4 = Vgov,6

• current relations:

I1 = I3 = I5/2, I8 = Iref, I6 = I7, I9 = I10
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Saturation constraints

• diode connected devices (M3,M4,M8, M10) automatically in saturation

• others must have Vds ≥ Vdsat:

– M7: Vdsat,7 ≤ Vcm

– M6: Vdsat,6 + Vcm ≤ Vdd

– M9: Vdsat,9 + Vgs,10 ≤ Vdd

– M5: Vds,5 + Vgs,1 ≤ Vcm

– M1 & M2: Vcm + Vgs,3 ≤ Vdd + Vth

• . . . all are posynomial inequalities
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Node capacitances and non-dominant poles

• capacitances at nodes are posynomials, e.g.,

Cout = Cgd,6 + Cdb,6 + Cgd,7 + Cdb,7 + CL

• non-dominant time constants are posynomials:

τ1 =
Cd1

gm,3
, τ2 =

Cd2

gm,4
, τ9 =

Cd9

gm,10

(Cd1, Cd2, Cd9 are node capacitances at drains of M1,M2,M9)

• to limit effect of non-dominant poles, make sum smaller than dominant
time constant:

τ1 + τ2 + τ9 ≤ τdom = CL/gm

. . . a posynomial constraint
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Power versus bandwidth trade-off
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Joint electrical/physical design

• each device has a (physical) cell width w and height h for floor planning

• devices are folded into multiple fingers

• (approximate) posynomial or monomial relations link electrical variables
(I, L, W ) and physical variables (w, h), e.g.,

– cell area is at least 4× active area: wh ≥ 4WL
– cell aspect ratio limited to 5:1: 1/5 ≤ w/h ≤ 5
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Slicing tree layout scheme

• vertical and horizontal slices fix relative placement of device cells

• leaves are device cells; root is bounding box
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Slicing tree constraints

• introduce width, height for each node in slicing tree

• for each vertical slice with parent a and children b, c add constraints

wa = wb + wc, ha = max{hb, hc}

• for each horizontal slice with parent a and children b, c add constraints

wa = max{wb, wc}, ha = hb + hc

• shows width and height of bounding box and each node is generalized
posynomial of device cell widths, heights

• resulting GP formulation is very sparse
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Joint electrical/physical design via GP

• form one GP that includes

– electrical variables, constraints (Ii, Li, Wi, gm,i . . .)
– physical variables, constraints (wi, hi, w

bbox, hbbox, . . .)
– coupling constraints (wihi ≥ 4WiLi, . . . )

• solve it all together

• extensions: can add

– parasitic estimates
– more accurate expressions for device cell dimensions
– channels for routing
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Optimal filter implementation

simple Gm-C two-pole lowpass filter

PSfrag replacements

g1
g2

C1 C2

input
output

transfer function is

H(s) =
1

1 + t1s + t1t2s2
, t1 = C1/g1, t2 = C2/g2

gi is amplifier transconductance
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Noise analysis

• Ni is input referred (white) amplifier input-referred voltage density

• spectral density of output noise is

N(ω)2 =
N2

1 + ω2N2
2

(1 − t1t2ω2)2 + t21ω
2

• root-mean-square output noise voltage is

M =

(∫ ∞

0

N(ω)2 dω

)1/2

=
(
αN2

1 + βN2
2

)1/2
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Amplifier and capacitor implementation models

• each amplifier has private variables u (e.g., device lengths & widths)
and constraints

• transconductance g is monomial in u; area Aamp, power P ,
input-referred noise density N are posynomial in u

• each capacitor has private variables v (e.g., physical dimensions) and
constraints

• capacitance C is monomial in v; area Acap is posynomial

• design variables are u1, u2, v1, v2
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Optimal filter implementation problem

• filter is Butterworth with frequency ωc:

t1 =
√

2/ωc, t2 = (1/
√

2)/ωc

• minimize total power of implementation, subject to area, output noise
limits:

minimize P (u1) + P (u2)

subject to t1 =
√

2/ωc, t2 = (1/
√

2)/ωc

Aamp(u1) + Aamp(u2) + Acap(v1) + Acap(v2) ≤ Amax

M = (ωc/4
√

2)(N2
1 + 2N2

2 )1/2 ≤ Mmax

• a GGP in the variables u1, u2, v1, v2
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Example

• Butterworth filter with ωc = 108rad/s

• private variables in amplifiers: (equivalent) L, W

• amplifier model:

Aamp = WL, P = 2.5·10−4W/L,

g = 4·10−5W/L, N =
√

7.5·10−16L/W

(based on simple model with Vdd = 2.5, Vgov = 0.2)

• private variable in capacitors is area Acap; C = 10−4Acap

• Amax = 4·10−6
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Power versus noise trade-off
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Monomial and Posynomial Fitting



A basic property of posynomials

• if f is a monomial, then log f(ey) is affine (linear plus constant)

• if f is a posynomial, then log f(ey) is convex

• roughly speaking, a posynomial is convex when plotted on log-log plot

• midpoint rule for posynomial f :

– let z be elementwise geometric mean of x, y, i.e., zi =
√

xiyi

– then f(z) ≤
√

f(x)f(y)

• a converse: if log φ(ey) is convex, then φ can be approximated as well
as you like by a posynomial

EPFL 6/16/06 73



Convexity in circuit design context

• consider circuit with design variables W1, . . . , Wn (say) & performance
measure φ(W1, . . . , Wn) (e.g., power, delay, area)

• two designs: W
(a)
i & W

(b)
i , with performance φ(a) & φ(b)

• form geometric mean compromise design with W
(c)
i =

√
W

(a)
i W

(b)
i ,

performance φ(c)

• if φ is generalized posynomial, then we have φ(c) ≤
√

φ(a)φ(b)

• this is not obvious
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Monomial/posynomial approximation: Theory

when can a function f be approximated by a monomial or generalized
posynomial?

• form function F (y) = log f(ey)

• f can be approximated by a monomial if and only if F is nearly affine
(linear plus constant)

• f can be approximated by a generalized posynomial if and only if F is
nearly convex
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Examples
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• tanh(x) can be reasonably well fit by a monomial

• 0.5/(1.5 − x) can be fit by a generalized posynomial

• (2/
√

π)
∫∞

x
e−t2 dt cannot be fit very well by a generalized posynomial
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What problems can be approximated by GGPs?

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m

gi(x) = 1, i = 1, . . . , p

• transformed objective and inequality constraint functions
Fi(y) = log fi(e

y) must be nearly convex

• transformed equality constraint functions Gi(y) = log Gi(e
y) must be

nearly affine
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Monomial fitting via log-regression

find coefficient c > 0 and exponents a1, . . . , an of monomial f so that

f(x(i)) ≈ f (i), i = 1, . . . , N

• rewrite as

log f(x(i)) = log c + a1 log x
(i)
1 + · · · + an log x(i)

n

≈ log f (i), i = 1, . . . , N

• use least-squares (regression) to find log c, a1, . . . , an that minimize

N∑

i=1

(
log c + a1 log x

(i)
1 + · · · + an log x(i)

n − log f (i)
)2
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Posynomial fitting via Gauss-Newton

find coefficients and exponents of posynomial f so that

f(x(i)) ≈ f (i), i = 1, . . . , N

• minimize sum of squared fractional errors

N∑

i=1

(
f (i) − f(x(i))

f (i)

)2

can be (locally) solved by Gauss-Newton method

• needs starting guess for coefficients, exponents
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Posynomial fitting example

• 1000 data points from f(x) = e(log x1)
2+(log x2)

2
over 0.1 ≤ xi ≤ 1

• cumulative error distribution for 3-, 5-, and 7-term posynomial fits
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A simple max-monomial fitting method

fit max-monomial
f(x) = max

k=1,...,K
fk(x)

(f1, . . . , fk monomials) to data x(i), f (i), i = 1, . . . , N

simple algorithm:

repeat

for k = 1, . . . , K

1. find all data points x(j) for which fk(x
(j)) = f(x(j))

(i.e., data points at which fk is the largest of the monomials)

2. update fk by carrying out monomial fit to these data
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Max-monomial fitting example

• same 1000 data points as previous example

• cumulative error distribution for 3-, 5-, and 7-term max-monomial fits
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Software & Modeling Systems



GP solvers

GP solvers (primal-dual, interior-point, exploit sparsity):

• MOSEK: www.mosek.com
(commercial; C with Matlab interface)

• GPCVX, GPPOSY: www.stanford.edu/~boyd/ggplab/
(open source; Matlab)

• CVXOPT: www.ee.ucla.edu/~vandenbe/cvxopt/
(open source; Python/C)
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GP/GGP modeling systems

• allow simple specification of GPs and GGPs in natural form

– declare optimization variables
– form monomial, posynomial, generalized posynomial expressions
– specify objective and constraints

• automatically transform to standard GP, call solver, transform back

• built using object-oriented methods and/or compiler-compilers
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Example (ggplab)

gpvar x y z % create three scalar GP variables

m1 = 3.4*x^-0.33/z % form a monomial

p1 = z*sqrt(m1)+0.1/m1 % form a posynomial

gp1 = max(1,x+y,p1) % form a generalized posynomial

% form an array of constraints

constrs = [ m1==x, p1<=m1, 1<=y, gp1+p1<=5/y ]

% solve generalized GP

[obj_value, solution, status] = gpsolve(x+y+z,constrs)
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Current GP/GGP modeling systems

• YALMIP: control.ee.ethz.ch/~joloef/yalmip.msql

– Matlab; supports multiple solvers
– part of much larger optimization modeling system

• GGPLAB: www.stanford.edu/~boyd/ggplab/

– open source; Matlab
– simple system for GP/GGP only; meant for tutorial purposes

• CVX: www.stanford.edu/~boyd/cvx/

– open source; Matlab/C
– part of larger convex optimization modeling system
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Conclusions



Conclusions

(generalized) geometric programming

• comes up in a variety of circuit sizing contexts

• can be used to formulate a variety of problems

• admits fast, reliable solution of large-scale problems

• is good at concurrently balancing lots of coupled constraints and
objectives

• is useful even when problem has discrete constraints
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Approach

• most problems don’t come naturally in GP form; be prepared to
reformulate and/or approximate

• GP modeling is not a “try my software” method; it requires thinking

• our approach:

– start with simple analytical models (RC, square-law, Pelgrom, . . . )
to verify GP might apply

– then fit GP-compatible models to simulation or measured data
– for highest accuracy, revert to local method for final polishing
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